

STATE BOARD OF OPTOMETRY

2450 DEL PASO ROAD, SUITE 105, SACRAMENTO, CA 95834 P (916) 575-7170 F (916) 575-7292 www.optometry .ca.gov

Continuing Education Course Approval Checklist

Title:

Provider Name:

✓ Completed Application
 Open to all Optometrists?
 ✓ Yes
 ✓ No
 Maintain Record Agreement?
 ✓ Yes

Correct Application Fee

Detailed Course Summary

Detailed Course Outline

PowerPoint and/or other Presentation Materials

Advertising (optional)

CV for EACH Course Instructor

☑License Verification for Each Course Instructor Disciplinary History? □Yes ☑No

STATE BOARD OF OPTOMETRY

2450 DEL PASO ROAD, SUITE 105, SACRAMENTO, CA 95834 P (916) 575-7170 F (916) 575-7292 www.optometry.ca.gov

CONTINUING EDUCATION COURSE APPROVAL APPLICATION

\$50 Mandatory Fee

specified in CCR § 1536(g).

Pursuant to California Code of Regulations (CCR) § <u>1536</u>, the Board will approve continuing education (CE) courses after receiving the applicable fee, the requested information below and it has been determined that the course meets criteria

In addition to the information requested below, please attach a copy of the course schedule, a detailed course outline and presentation materials (e.g., PowerPoint presentation). Applications must be submitted 45 days prior to the course presentation date.

Please type or print clearly.			
Course Title		Course Presentation Date	
Optic Nerve Cupping		02/13/20	1 7
Course	Provider Co	ontact Information	
Provider Name			
Lina	Poyzner		
(First)	(L	.ast) (Mid	dle)
Provider Mailing Address			
Street 1450 San Pablo St Los	Angeles	State <u>CA</u> Zip	-
Provider Email Address	.usc.edu		_
Will the proposed course be open to all California licensed optometrists?			
Do you agree to maintain and furnish to the Board and/or attending licensee such records of course content and attendance as the Board requires, for a period of at least three years from the date of course presentation?			
Соц	urse Instruct	tor Information	
Please provide the information below and attach If there are more instructors in the course, please	the curriculu e provide the	m vitae for <u>each</u> instructor or lecturer in requested information on a separate s	nvolved in the course. heet of paper.
Instructor Name			
Alena	Reznik		
(First)	(La	ast) (I	Middle)
License Number 113775		License Type MD	
Phone Number (323) 442-6383		Email Address lina.poyzner@med	d.usc.edu
I declare under penalty of perjury under the la this form and on any accompanying attachme	aws of the S ents submitt	tate of California that all the informated is true and correct.	tion submitted on

02/01/2017

Optic Nerve Cupping

Alena Reznik, MD

Summary

The goal of the lecture is to describe the signs and features of optic nerve cupping and provide differential diagnosis. I will review definitions of glaucoma (primary open angle, closed angle and inflammatory), optic nerve atrophy due to compression, due to toxic optic neuropathy and pre-natal injury. Rare syndromes will be described such as morning glory and hypoplasia of optic nerves. Diagnostic criteria and approach will be outlines for each possible condition (difference in physical exam, visual field and OCT). Images will be reviewed with case presentation for each condition. Special attention will be paid to the need for central nervous system imaging (CT scan vs MRI) and pediatric patient population. I will conclude with an outline of clinical criteria for glaucomatous optic neuropathy vs optic neuropathy of other etiologies.

Optometry CME outline (Alena Reznik MD) – 1 hour lecture

February 13, 2017 6pm-7pm

Optic Nerve Cupping

- 1. Optic nerve cupping- definition. Adults vs pediatric patients.
- 2. Non-glaucomatous optic nerve cupping- definition.
- 3. Cup to disk ratio in normal subjects (adult): review of data
- 4. Cup to disk ratio in normal subjects (pediatric): review of data
- 5. Review of etiologies of cupping in absence of high IOP: physiologic, normal tension glaucoma, congenital abnormalities, prematurity, hereditary optic neuropathy, optic nerve compression, toxic and nutritional optic neuropathies, ischemic optic neuropathies.
- 6. Physiologic cupping- definition, examples.
- 7. Normal tension glaucoma- definition, examples
- 8. Congenital abnormalities- definition, examples
- 9. Prematurity- definition, examples
- 10. Hereditary optic neuropathy- definition, examples
- 11. Optic nerve compression definition, examples
- 12. Toxic and nutritional optic neuropathies- definition, examples
- 13. Ischemic optic neuropathies- NAION vs pre-operative, definition, examples
- 14. Conclusion: how to differentiate and work up non-glaucomatous cupping.

Ranked in the top 10 in Ophthalmology in the United States for 20 years

Optic Nerve Cupping

Alena Reznik, MD Assistant Professor of Ophthalmology Glaucoma Service Cell 310-980-6038 alenarez@med.usc.edu

Optic Nerve Cupping

- R/o glaucoma
- Special population: children with large C:D
 - IOP measurements
 - Ability to perform VF tests
- Childhood glaucoma- rare

What is Optic Nerve Cupping?

- Due to nerve fiber loss
- Cupping is a sign of irreversible damage in adults
- Cupping is also seen in infantile and childhood forms of glaucoma and may be reversible

What is Non-Glaucomatous Optic Nerve Cupping?

- Increased C:D from another disease
- Increased C:D is harder to notice in a smaller disk and is often harder to see in children

Vitamin B12 deficiency

7

C:D in Normal Subjects

- Adults
 - Median C:D ratio is 0.25-0.3
 - Normal amount of C:D asymmetry is <0.2
- Children
 - Mean C:D ratio
 - 0.22±0.13 (Sydney Childhood Eye Study: 6 y.o., OCT)
 - By race: European White 0.2, East Asian 0.3, Middle Eastern 0.2
 - Absent cup present only in European White subjects

8

- 0.2 (Duke Study: OCT)
 - By race: Af Am 0.23, Caucasian 0.16

What is a normal optic nerve in children?

- C:D ratio increases over time in children
- Mean C:D:
 - <0.3 in infants <1 year old</p>
 - 0.37 in 3 year olds
 - 0.42 in 17 year olds¹

¹EI-Dairi et al. OCT in the eyes of normal children. Arch ⁹ Ophthalmol 2009.

Glaucomatous Cupping

- Loss of neuroretinal rim area
- Increase in the absolute size of the cup
- Vertical elongation of the cup
- Excavation of the lamina cribosa
- Peripapillary atrophy
- Asymmetry
- Disc hemorrhage

Cupping in the Absence of High IOP

- Physiologic
- Normal tension glaucoma (NTG)
- Congenital anomalies

 Coloboma, pit, hypoplasia, tilting, morning glory
- Hereditary optic neuropathies

 Leber's, dominant optic atrophy
- Optic Nerve Compression
- Toxic and nutritional optic neuropathies
 - B12, methanol, medications
- Ischemic optic neuropathies
 - NAION, shock, peri-operative
- Prematurity/Low Birth Weight USC Eye Institute

Cupping in the Absence of High IOP

- Physiologic
- Normal tension glaucoma (NTG)
- Congenital anomalies

 Coloboma, pit, hypoplasia, tilting, morning glory
- Prematurity/Low Birth Weight
- Hereditary optic neuropathies

 Leber's, dominant optic atrophy
- Optic Nerve Compression
- Toxic and nutritional optic neuropathies – B12, methanol, medications
- Ischemic optic neuropathies

 NAION, shock, peri-operative

Physiologic Cupping

- Congenital variant
- Symmetric, NON-PROGRESSIVE
- Large cups
- No visual effects

Cupping in the Absence of High IOP

- Physiologic
- Normal tension glaucoma (NTG)
- **Congenital anomalies**
 - Coloboma, pit, hypoplasia, tilting, morning glory

14

- Hereditary optic neuropathies Leber's, dominant optic atrophy
- Optic Nerve Compression
- Toxic and nutritional optic neuropathies
 - B12, methanol, medications
- Ischemic optic neuropathies NAION, shock, peri-operative
- Prematurity/Low Birth Weight **USC**Eye Institute

Congenital Anomalies

FIG. 2. Congenital optic neuropathies associated with optic disc cupping. A. Morning glory syndrome. B. Optic disc coloboma. C. Tilted optic disc. D. Megalopapilla. E. Optic nerve hypoplasia. Figures A, B, C, and E are reproduced with permission from Kline LB, Foroozan R. Optic Nerve Disorders. New York, NY: Oxford University Press, 2007. Figure D courtesy of Randy Kardon, MD, PhD.

Coloboma

USCEye Institute

- Irregular inheritance, variable expressivity and penetrance
- Abnormality in the distal extremity of the embryonic fissure
- Progressive cupping has been described in autosomal-dominant coloboma¹
- Association with CHARGE syndrome
 - Coloboma, heart, choanal atresia, mental retardation. GU. ear

¹Moore et al. Progressive optic nerve cupping and neural rim decrease in a patient with bilateral autosomal dominant optic nerve colobomas. AJO 2000.

Morning Glory Disk

- Funnel-shaped excavation of disc,
- With disc enlargement, pigmentary changes, retinal vessel radial distribution, glial tuft
- Vision usually sub-normal
- Associations:
 - Moyamoya disease (progressive bilateral stensosis of distal ICA)
 - Transsphenoidal basal encephalocele (chiasm, hypothalamus, pituitary, ACA herniation via anterior skull base) – pulsatile nasal mass

Optic Nerve Pits

- Congenital, frequency 1:11K
- Temporal location, 15% bilateral
- ~50% have visual field defects
- Serous macular detachments possible: 25-75%
- No CNS malformations

Optic Nerve Hypoplasia

- Small, surrounded by a yellow halo (double ring sign)
- May be associated with cupping
 - Loss of (or lack of formation) of nerve fiber tissue after scleral canal has formed results in more cupping than decrease in overall size
- Associated with midline or hemispheric brain defects (De Morsier Syndrome: ON hypoplasia, pituitary abnormalities, absent septum pellucidum)
 USCEve Institute

Tilted Discs

- May appear cupped
- Displacement of the optic disc peripherally
- Oblique vessel insertions
- Associations
 - High myopia
 - Amblyopia
 - VF defects

Cupping in the Absence of High IOP

- Physiologic
- Normal tension glaucoma (NTG)
- Congenital anomalies

 Coloboma, pit, hypoplasia, tilting, morning glory
- Prematurity/Low Birth Weight
- Hereditary optic neuropathies — Leber's, dominant optic atrophy
- Optic Nerve Compression
- Toxic and nutritional optic neuropathies – B12, methanol, medications
- Ischemic optic neuropathies

 NAION, shock, peri-operative

Nutritional, Toxic and Genetic Causes of Optic Neuropathies

- Most etiologies in these categories are related to mitochondrial dysfunction
- Papillomacular bundle is the most metabolically active, and therefore often affected first

22

USCEye Institute

Cupping and/or temporal pallor

Mitochondrial Optic Neuropathies

Nutritional, Toxic, Genetic

- Pathogenesis not completely understood
- Final common pathway disruption of mitochondrial oxidative phosphorylation, increased oxidative stress

Copper, ethambutol

Differentiating Mitochondrial ON from Glaucoma

- Visual acuity and color vision
 - Late loss in glaucoma, early loss in ON
- Optic disk
 - Focal loss of rim in glaucoma
 - Also in glaucoma: normal rim color, vertical elongation, splinter hemorrhage
 - Rim pallor in ON (pallor>cupping)
- Visual field
 - Arcuate, nasal step, generalied depresson in glaucoma
 - Central loss in ON

Hereditary Optic Neuropathies

- Leber's hereditary optic neuropathy (LHON)
 - Mitochondrial inheritance
 - 80-90% males, 10-30 yrs old
 - Central vision loss, color loss
 - Initially disc elevation and peripapillary thickening and telangectasia

Eventual loss of unmyelinated axons (which have more mitochondria) leads to cupping

Hereditary Optic Neuropathies

- Dominant Optic Atrophy
 - OPA1 gene mutation
 - Insidious onset in first 2 decades

- Mild to moderate symmetric central vision and color vision loss
- Temporal disc pallor and wedge-shaped temporal excavation

Cupping in the Absence of High IOP

- Physiologic
- Normal tension glaucoma (NTG)
- Congenital anomalies

 Coloboma, pit, hypoplasia, tilting, morning glory
- Prematurity/Low Birth Weight
- Hereditary optic neuropathies

 Leber's, dominant optic atrophy
- Toxic and nutritional optic neuropathies
 - B12, methanol, medications
- Optic Nerve Compression
- Ischemic optic neuropathies

 NAION, shock, peri-operative

Nutritional Optic Neuropathies

- Slowly progressive optic nerve atrophy and/or cupping
- Central vision loss, color vision loss
- Co-existent neurologic and hematologic signs and symptoms
- GI disease or extreme diet

- Vitamin B12
 - Copper, Vitamin A, Folate

Toxic Optic Neuropathies

- Methanol toxicity
 - Disc and peripapillary retinal edema followed by atrophy and disc excavation within days to weeks
- Other toxins
 - Medications (ethambutol, chemotherapy)
 - Lead, heavy metals, arsenic
 - Cyanide
 - Ethylene glycol

Hereditary/Toxic/Nutritional ON and NTG

- Differentiation mainly by:
 - Family history
 - Central visual acuity
 - Color vision
 - RIM PALLOR
 - Early age of onset

Differentiation from Normal Tension Glaucoma

Annick V. Fournier, MD, FRCS(C),¹ Karim F. Damji, MD, FRCS(C),¹ David I₃₀Epstein, MD,² Stephen C. Pollock, MD²

Ophthalmology 2001;108:1595–1602 2IR

Cupping in the Absence of High IOP

- Physiologic
- Normal tension glaucoma (NTG)
- Congenital anomalies

 Coloboma, pit, hypoplasia, tilting, morning glory
- Prematurity/Low Birth Weight
- Hereditary optic neuropathies

 Leber's, dominant optic atrophy
- Toxic and nutritional optic neuropathies
 - B12, methanol, medications
- Optic Nerve Compression
- Ischemic optic neuropathies

 NAION, shock, peri-operative

Compressive Lesions

- Suprasellar lesions
- Several case series in <u>adults</u> describing glaucomalike cupping¹
 - 50% pituitary adenoma
 - Less commonly pituitary apoplexy, meningioma, cranipharyngioma, other cystic lesions²

32

¹Piette and Sergott. Pathological optic disc cupping. Curr Op Ophthalmol 2006.

²Greenfield et al. The cupped disc: Who needs neuroimaging? Ophthalmology 1998.

Cupping in the Absence of High IOP

- Physiologic
- Normal tension glaucoma (NTG)
- Congenital anomalies

 Coloboma, pit, hypoplasia, tilting, morning glory
- Hereditary optic neuropathies

 Leber's, dominant optic atrophy
- Optic Nerve Compression
- Toxic and nutritional optic neuropathies

 B12, methanol, medications
- Prematurity/Low Birth Weight

Cerebral Injury in Newborns

- Damage to the immature brain (<34 wks) primarily affects the periventricular region
- Birth weight <1750 gm and GA <30 weeks
- Periventricular leukomalacia (PVL)
 - Reduced BP and impaired autoregulation leads to decreased cerebral perfusion
 - Watershed zone exists at posterior horns (less commonly anteriorly) as immature blood supply converts to adult vascular supply
 - Corticospinal tract and optic radiations most commonly affected

Dilation of right ventricle

Cerebral Injury in Prematurity

- Intraventricular hemorrhage (<u>IVH</u>)
 - Preterm infants have limited ability to autoregulate cerebral blood flow; abrupt ①BP can results in development of IVH
 - 15% of children with IVH can have resultant parenchymal damage to the periventricular white matter including optic radiations

Perinatal Ischemic Damage

- Preterm babies with anoxic brain injury (ischemic or hemorrhagic)
- Axonal disruption in peri-ventricular optic radiations leads to transsynaptic retrograde degeneration across the lateral geniculate body
- Insult <29 weeks: hypoplasia, scleral plasticity will lead to a diffusely hypoplastic nerve
- Insult >30 weeks: , scleral canal fully formed, uppin rim diameter set **USC**Eye Institute

Timing of Ischemic Insult Plays a Role in Whether ON is Hypoplastic or Cupped

<u>Before 29 weeks</u>, scleral canal plasticity results in decreased ON diameter

EXTENDED REPORT

Optic disc morphology may reveal timing of insult in children with periventricular leucomalacia and/or periventricular haemorrhage

L Jacobson, A-L Hård, E Svensson, O Flodmark, A Hellström

Br J Ophthalmol 2003;87:1345-1349

Figure 1 (A) Fundus photograph and CT of a 5 year old girl with gestational age at birth of 34 weeks, esotropia, and visual acuity 20/100. The optic disc has a small area. The CT scan shows extensive loss of perventricular white matter including almost all white matter in the right cerebral hemisphere. This image represents the end states following a perventricular hemorrhagic inflarction, indicating an early lesion. (B) Fundus photograph and MRI of a 10 year old bay with gestational age 31 weeks at birth and perinatal asphysia. He is ortaphoric, with visual acuity right eye 20/20, 0/30 left eye, and small bialetral detest in the interior fields, normal intracoular pressure. The optic disc has a large cup in a normal sized optic disc. The 12 weighted MR scan demonstrates focal dilatation of the occipital horns, more pronounced in the right cerebral hemisphere. Fieldening loss of pertritional white matter. White matter is preserved anteriority as wall as in centrum semiovale (not shown), indicating a other lesion.

Figure 3 Schematic illustration of number of children and their optic disc morphology in relation to estimated timing of brain lesion. *Below the 2.5th centile of the reference group. *Above the 97.5th centile of the reference group.

Prematurity and Low Birth Weight

In the absence of cerebral damage from PVL or IVH

• Sydney Childhood Eye Study

- Low birth weight (<2.5 kg) associated with increased
 C:D at 12 years of age
 - Adjusted for age, gender, ethnicity, height, AL, BMI
- Smaller length and head circumference similarly associated with larger C:D
- Relationships persisted when premature babies <33 wks removed from analysis
- Authors speculate that intrauterine influences result in interruption of the maturation of ganglion cells

39

USCEye Institute

Samarawickrama, et al. Birth weight and optic nerve head parameters. Ophthalmology 2009. Now that we know the other causes of optic nerve cupping, how can we distinguish them from glaucoma??

Glaucoma	Non glaucomatous cupping
Lack of Rim Pallor	Pallor>Cupping (94% specific) ¹
Excavation of cup	Focal excavation (temporally)
Rim notching or obliteration (87% specific) ¹	
Peripapillary atrophy	Color vision loss
Disc hemorrhages (specific but not sensitive)	rAPD
Spares papillomacular bundle; thinnest rim is inferior	Involves papillomacular bundle; thinnest rim is usually temporal

¹Trobe et al. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol 1980.

What's so important about the rim?

nstitute

- Rim pallor warrants a search for an alternative etiology other than glaucoma in any patient with ON cupping, especially in children
- Rim color is usually normal in glaucoma
- Rim color is usually pale in non-glaucomatous cupping

Management

- History
 - Birth History crucial
 - Diet, GI system, other exposures, medications
 - Family History
- Exam
 - Rim pallor
 - Evaluate for signs of glaucoma (vertical notching, disk hemorrhages)
 - Evaluate for signs of non-glaucoma (color vision loss, rAPD, decreased visual acuity, spared peripheral fields)

Management

44

- Further work-up based on history and physical examination
- Consider
 - Blood work
 - Vitamin B12, Vitamin A, Folate
 - Lead, heavy metals, arsenic
 - LHON and Dominant OA genetic testing
 - Neuroimaging
 - MRI brain with and without IV contrast
 - Evaluate for perinatal damage
 - Evaluate for compressive mass
 - Signs of ON hypoplasia

Thank you!!!

- Questions?
- Cell 310-980-6038
- alenarez@med.usc.edu

Pasadena/Downtown/Arcadia/Beverly Hills

RetCam image analysis of optic disc morphology in premature infants and its relation to ischaemic brain injury

E McLoone, M O'Keefe, V Donoghue, S McLoone, N Horgan, B Lanigan

Br J Ophthalmol 2006;90:465-471. doi: 10.1136/bjo.2005.078519

 Table 2
 Optic disc parameters in premature infants with and without periventricular white matter (PVWM) damage

Variable (median values)	No PVWM da mage (n = 80)	PVWM damage (n=24)	p Value
Gestational age (weeks)	28.0	27.0	0.20
Body weight (g)	1050.0	1008.0	0.68
Optic disc diameter (mm)	1.05	0.95	0.002
Optic disc area (mm ²)	1.13	1.06 Inc. C.D. roti	0.03
Optic cup area (mm ²)	0.09	0.08 INC C.D Tau	0.07
Optic rim area (mm ²)	1.03	0.95	0.02

Cortical Visual Impairment and Optic Nerve Cupping

Changes in the Optic Disc Excavation of Children Affected by Cerebral Visual Impairment: A Tomographic Analysis

Giulio Ruberto,¹ *Roberto Salati*,² *Giovanni Milano*,¹ *Chiara Bertone*,¹ *Carmine Tinelli*,³ *Elisa Fazzi*,⁴ *Rosanna Guagliano*,¹ *Sabrina Signorini*,³ *Renato Borgatti*,² *Alessandro Bianchi*¹ (Invest Ophthalmol Vis Sci. 2006;47:484–488)

TABLE 1. Optic Disc Parameters and Statistical Significance in CVI-Affected Subjects Compared with Healthy Controls

	CVI Subjects $(n = 24)$		Control Subjects $(n = 88)$							
	Мо	Mean		SD		Mean		D	Р	
	OD	OS	OD	OS	OD	OS	OD	OS	OD	os
Disc atea	2.05	1.97	0.48	0.38	2.48	2.42	0.46	0.50	0.000075	0.000163
Cup area	0.64	0.60	0.48	0.42	0.41	0.41	0.35	0.38	0.016224	0.005800
Ritn atea	1.40	1.30	0.49	0.41	2.03	2.01	0.47	0.44	0.000001	0.000000
Cup volume	0.23	0.13	0.50	0.12	0.09	0.10	0.13	0.15	0.045874	0.080435
Ritn volutne	0.42	0.29	0.28	0.18	0.52	0.52	0.23	0.32	0.032521	0.000140
Cup/disc ratio	0.30	0.33	0.21	0.19	0.16	0.16	0.11	0.12	0.001874	0.000147
Mean cup depth	0.25	0.17	0.26	0.09	0.16	0.17	0.10	0.12	0.009064	0.413672
Maximum cup depth	0.69	0.48	0.66	0.22	0.50	0.53	0.30	0.36	0.081090	0.962876
Cup shape measure	-0.15	-0.16	0.11	0.08	-0.22	-0.23	0.10	0.08	0.001681	0.000711
Mean RNFL thickness	0.15	0.10	0.16	0.11	0.21	0.24	0.08	0.13	0.003430	0.000022

Periventricular White Matter Damage and the Optic Disc

- PVL and Ischemia from IVH:
 - Most commonly involves optic radiations passing adjacent to lateral ventricles
 - Associated in several studies with smaller ON area, larger cup area, smaller rim area, increased C:D
 - Most significant in babies with grade 4 IVH
 - Periventricular white matter damage from grade 4 IVH or PVL can result in retrograde trans-synaptic damage
 - Before 28 weeks: small nerve (scleral canal plasticity)
 - After 29 weeks: cupped nerve (scleral canal size set)

Vision is our Mission—Preserve, Protect, Restore

USC Roski Eye Institute

Keck Medicine of USC

Nationally top ranked ophthalmology program — 22 consecutive years and counting!

J. BRADLEY RANDLEMAN, MD Professor of Ophthalmology, Director, Cornea, External Disease, and Refractive Surgery Service

J. Bradley Randleman, MD is one of the nation's top corneal researchers and surgeons and an expert on everything from LASIK to the latest FDA approved treatments for corneal cross-linking surgery.

Alena Reznik, MD

Assistant Professor of Clinical Ophthalmology

Dr. Reznik specializes in early detection and treatment of glaucoma and cataracts as well as novel surgical techniques for advanced cases. Her research interests are minimally invasive glaucoma surgery and new approaches to eye emergencies. She is a principal investigator on clinical trials for glaucoma medications and surgical devices.

DAMIEN C. RODGER, MD, PHD Assistant Professor of Clinical Ophthalmology

Dr. Rodger's clinical interests include diabetic retinopathy, macular degeneration, medical retina, retinal detachment, uveitis and vitreoretinal surgery.He has conducted research on the design, fabrication, and testing of high-density microtechnologies for retinal and spinal cord prostheses, and has been instrumental in the development of other novel bioMEMS. PLEASE JOIN US FOR AN EDUCATIONAL EVENING WITH FRIENDS & NEIGHBORS

Private 2 Hour CME in Beverly Hills

Date: Monday, Februay 13, 2017 Time: 7:00pm Location:

Maggiano's Little Italy at The Grove 189 The Grove Dr. Suite Z80 Los Angeles, CA 9036 RSVP: Lina Poyzner at lina.poyzner@med.usc.edu

Program:

Glaucoma (Optic Nerve Cupping), presented by Dr. Reznik — 1 Hour

Retina (OCT Reading and OCT Enigmas), presented by Dr. Rodger — 30 min.

Cornea (Cross Linking), presented by Dr. Randleman — 30 min.

USC Roski Eye Institute • 323-442-6335 • www.usceye.org • Clinics conveniently located at:

Los Angeles Clinic USC Roski Eye Institute 1450 San Pablo Street, 4th Floor Los Angeles, CA 90033 323 442-6335 Beverly Hills Clinic USC Roski Eye Institute 9033 Wilshire Boulevard, Suite 360 Beverly Hills, CA 90211 49 310-601 3366 Pasadena Clinic USC Roski Eye Institute 625 S. Fair Oaks Avenue, Suite 400 Pasadena, CA 91105 626 796-0293 Arcadia Clinic USC Roski Eye Institute 65 N. First Avenue, Suite 101 Arcadia, CA 91006 626 446 2122

CURRICULUM VITAE ALENA REZNIK, MD SEPTEMBER 19, 2016

PERSONAL INFORMATION:

Work

USC Eye Institute 1450 San Pablo Street 4806 Los Angeles, CA 90033 Home 8568 Burton Way Apt 102 Los Angeles, CA 90048

Phone:323-4426383 Fax: 323-4426412 Citizenship: US Email: alena.reznik@med.usc.edu

EDUCATION AND PROFESSIONAL APPOINTMENTS

EDUCATION:

2005	BS, Summa Cum Laude, Microbiology/Immunology/Molecular Genetics, UCLA, LA
2009	MD, Johns Hopkins University School Of Medicine, Baltimore

POST-GRADUATE TRAINING:

2009-2010	Internship in Internal Medicine, UC Davis Medical Center, Sacramento
2010-2013	Ophthalmology Residency, UC Davis Medical Center, Sacramento
2013-2014	Glaucoma Fellowship, Jules Stein Eye Institute, UCLA, LA

HONORS, AWARDS:

2016 2016	Top Doctor 2016 Rising Star 2016	Pasadena Magazine Top Doctors
2012	ARVO Travel Grant	ARVO, Ft.Lauderdale, FL
2007	AFAR Research Fellow	Johns Hopkins Hospital, Baltimore, MD
2008-2009	The Roothbert Fund Fellow	Johns Hopkins Hosptal, Baltimore, MD
2008-2009	Marilyn and Marshall Butler Scholarship	Johns Hopkins Hospital, Baltimore, MD
2007-2008	William W.More, Ph.D. Memor	icJohns Hopkins Hospital, Baltimore, MD
2007-2009	HIAS Scholarship	NY
2007-2009	Ruth G White PEO Scholarship	oJohns Hopkins Hospital, Baltimore, MD
2007-2009	Ethel O. Gardner PEOP Scholarship	Johns Hopkins Hospital, Baltimore, MD
2007	Travel Grant AGS	WA

ACADEMIC APPOINTMENTS:

2014-current	Assistant Professor of	USC Eye Institute, USC, LA, CA
	Ophthalmology	

TEACHING

DIDACTIC TEACHING: Institution USC

2014	Femtosecond Laser in Glaucoma Surgery	1Hr	Lecturer
2015	Novel Techniques in Glaucoma Surgery	2Hrs	Lecturer
2015	New Treatments in Advanced Glaucoma	2Hrs	Lecturer
2015	Glaucoma Curriculum (USC LAC Residency)	12Hrs	Lecturer
10/2015	Wet Lab "Minimally Invasive Glaucoma Surgery/Trabectome"	3Hrs	Lecturer
11/2015	Wet Lab "iStent and Angle Surgery"	3Hrs	Lecturer
11/2015	Wet Lab "Trabeculectomy"	2Hrs	Lecturer
3/2016	OKAP Review Lectures	4 Hrs	Lecturer
3/2016	Journal Club Glaucoma	2Hrs	Lecturer

POSTGRADUATE MENTORSHIP:

2015-2016	Benjamin Xu, MD, PhD	PGY4 2016	Career Guidance
2014-2015	Yohko Murakami, MD	PGY4 2015	Career Guidance

SERVICE

DEPARTMENT SERVICE:

Complaince Committee	USC Eye Institute
Residency Selection	USC Eye Institute
Glaucoma Fellowship Selection	USC Eye Institute
Postgraduate Education Committee	USC Eye Institute
	Complaince Committee Residency Selection Glaucoma Fellowship Selection Postgraduate Education Committee

PROFESSIONAL SOCIETY MEMBERSHIPS:

2010-current	American Academy of Ophthalmology
2013-current 2010-current	American Glaucoma Society Women In Ophthalmology
2010-current	American Society of Cataract and Refractive Surgeons

Research and Scholarship

EDITORSHIPS AND EDITORIAL BOARDS:

03/2015-current Editor Elsevier Editorial System

MAJOR AREAS OF RESEARCH INTEREST

Research Areas

- 1. Minimally Invassive Glaucoma Surgery
- 2. Novel Surgical Techniques in Glaucoma

PUBLICATIONS:

Refereed Journal Articles:

Klimava, A, Akpek, E. Evaluation of Patients with Dry Eye Syndrome for Associated Medical Conditions. ARVO 2007. Lecture presentation, May 2007. Published in Cornea September 2010:29(9):1072. Reznik J, Salz, J, **Klimava A**. Late Unilateral Corneal Ectasia After PRK With Preoperative Topography Suggestive of FFK. AAO Refractive Subspecialty Day, November 2006. Lecture presentation; Published in J Refract Surg. 2008 Oct;24(8):843-7.

Nagai N, **Klimava A**, Wen-Hsiang L, Handa J. CTGF is increased in Basal Deposits and Regulates Matrix Production through the ERK (p42/p44^{mapk}) MAPK and the p38^{mapk} signaling pathways. Published in Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1903-10.

REFEREED JOURNAL ARTICLES IN PRESS:

Format: Authors, Title. *Journal.* Volume #(Suppl ##):Page-Page, Year. PMID#, PMCID#, *Narrative describing personal contribution.*

REFEREED REVIEWS, CHAPTERS, AND EDITORIALS:

Reznik, A, Varma, R. (12/2015). Ab-Interno Subconjunctival Glaucoma Implant for Advanced Open-Angle Glaucoma

CLINICAL COMMUNICATION: (CASE REPORTS, LETTERS)

Authors. Title. Journal Volume(Suppl ##):Page-Page, Year. PMID#, PMCID#

ON-LINE PUBLICATIONS:

Reznik A, Mukundum G, Sonu R, Lin L. Imaging in immunohistologically proven orbital tumors. Submitted for a publication in Radiographics, May 2012

BOOKS, MONOGRAPHS, AND TEXT BOOKS:

Authors. Title. *Publication* Volume(Suppl ##):Page-Page, Year.

LETTERS TO THE EDITOR:

Authors. Title. Publication Volume(Suppl ##):Page-Page, Year. PMID#, PMCID#

ABSTRACTS AND PRESENTATIONS:

Reznik A, Keltner J. Emergency department direct ophthalmoscopy and non-mydriatic funduscopic camera as a training tool. UC Davis research Symposium 2012. Lecture presentation.

Reznik A, Weber C, Telander D, Morse L, Thirkill C. Inflammatory reactions complicating exudative agerelated macular degeneration. ARVO 2012. Poster presentation.

Akpek E, **Klimava A**, Thorne J, Martin D, Lekhanont K, Ostrovsky A. Evaluation of Dry Eye Patients for Presence of Underlying Sjogren's Syndrome. AAO 2007 meeting. Lecture presentation.

Gupta A, Sadeghi P, **Klimava A**, Akpek E. Occult thyroid eye disease in patients presenting with dry eye symptoms. Tear Film and Ocular Surface Society Annual Meeting, Taormina, Sicily, September 2007. Lecture presentation.

Reznik J, Salz, J, **Klimava A**. Late Unilateral Corneal Ectasia After PRK With Preoperative Topography Suggestive of FFK. AAO Refractive Subspecialty Day, November 2006. Lecture presentation; Published in J Refract Surg. 2008 Oct;24(8):843-7.

Klimava A, Handa J. Increased Connective Tissue Growth Factor in Basal Deposits of Bruch's Membrane of Human Maculae. American Geriatric Society Annual Meeting, May, 2007. Poster presentation.

Klimava A, Handa J. Connective Tissue Growth Factor Expression in ARMD. Johns Hopkins Summer Activities Symposium, October 2006. Poster presentation.

Reznik J, Kim A, **Klimava A**, Akpek E, Gatifloxacin 0.3% in treatment of bacterial keratitis; ARVO 2009. Poster presentation.